Friday, April 02, 2010

A Balanced (hopefully) look at Methane Hydrates

When it comes to the issue of exploiting permafrost/undersea Methane Hydrates I definitely have a strong bias. I am against it. Nonetheless there are strong and, from some perspectives, valid opinions to the contrary. In this article I will attempt to present a balance of both sides of the argument, while taking certain editorial license consistent with my bias.


If you study the methane hydrate literature, as I have for the past several years - the newspaper and magazine articles, the web sites and blogs, the scientific papers - the one thing that is clear is that there are a lot of different and conflicting opinions in play. That is understandable. It is only in these past thirty years that the role of methane as an important carbon sink and a serious greenhouse gas, and the potential of methane hydrates as a fossil-fuel-replacing energy source have come to the forefront. Significant study of methane hydrates is really only in its infancy, and it is being driven, sponsored and financed by two different, opposing objectives. In fairness, however, I must point out that at this stage there are nearly as many concerns expressed and warnings issued from the energy industry as there are from the scientific community. The difference is that one side downplays the concerns and warnings and the other side pushes them to the forefront.

It is, nonetheless, those two different aspects of methane hydrates - as a source of the serious greenhouse gas more than 20 times more potent than carbon dioxide and as a potential energy source - that are at the heart of the divergence of opinion. Those, like myself, focused on methane as a greenhouse gas see the potentially serious environmental risks and dangers involved in attempting to exploit methane hydrates, especially in view of our energy exploitation track record. Those focused on methane hydrates as a major potential energy source tend to downplay the risks and dangers in the name of "need", progress and national energy security.

But haven't we been here before? The orchestrated debate over cigarettes and tobacco? The debate constantly swirling around the burning of fossil fuels? The debate over biofuels contributing to escalating global hunger? The furious global warming debate? Even the rancorous terminology hurled from either side of the debate is the same.

I have listed nearly thirty online sources at the end of this article that show, as clearly and in as balanced a manner as I can manage, the clear divergence of literature fostered by the two different camps. If you are uncertain how you feel about the exploitation of methane hydrates, or if you are looking to build your knowledge about them I urge you to visit as many of these sites as possible. Alternatively, google searches will give you literally hundreds of thousands of references and sites to investigate. If you are looking for an overview, with a bias toward a concern for the risks and dangers, I invite you to read the several other articles I have written in my blog on the subject.

Unintended consequences

Various sites listed deal with unintended consequences. We can destabilize a reserve of methane hydrates accidentally when we aren't even attempting to exploit it. Methane Hydrate: A surprising compound, has this, ".....ocean-based oil-drilling operations sometimes encounter methane hydrate deposits. As a drill spins through the hydrate, the process can cause it to dissociate. The freed gas may explode, causing the drilling crew to lose control of the well. Another concern is that unstable hydrate layers could give way beneath oil platforms or, on a larger scale, even cause tsunamis."[2] Gas Hydrates: Natural gas hydrate studies in Canada, adds, "Shallow gas in the Mackenzie Delta, that may be attributable to hydrate, resulted in the loss of life of two drillers during early exploration." and includes this warning, "Present atmospheric methane is increasing at such a rate that if it continues, methane will be the dominant greenhouse gas in the second half of the century."[4] And methane, I remind you, is 20 times more potent as a greenhouse gas than carbon dioxide.

What unintended consequences might occur when we are intentionally interfering with methane hydrate reserves, with whatever extraction technology we might use? Methane hydrates: Energy's most dangerous game, addresses this issue directly. "The paradox is that while gas can be extracted from methane hydrates, doing so poses potentially catastrophic risks. ..... A substantial amount of evidence suggests that weakening the lattice-like structure of gas hydrates has triggered underwater landslides on the continental margin. In other words, the extraction process, if done improperly, could cause sudden disruptions on the ocean floor, reducing ocean pressure rates and releasing methane gas from hydrates."[6] This is addressed further in Realizing the Energy Potential of Methane Hydrate for the United States, in this statement. "The production of methane from methane hydrate also involves potential drilling and production safety issues and environmental consequences. Production safety issues are sometimes called “geohazards” because they refer to adverse geologic and environmental consequences that may result from human disturbance of the methane hydrate and surrounding sedimentary layers."[12] However a strong counter argument is presented in, Methane and Methane Hydrates, Section 2, "Nonetheless, the hydrates in the sediments of the seafloor do remain frozen: after all, they are icy lattices. In addition, they remain frozen even well above the normal melting point of ice (0°C; 32°F), and at temperatures up to about 15°C (59°F). They manage this feat because of the enormous pressure that exists at these depths."[15]

Political Pressures to use Methane as an Energy Source

The use of methane as a fuel and energy source is not some distant pipe dream. Significant quantities of methane (produced with digesters from animal manure) are already in use in some countries such as Denmark. But there appears to be serious political pressure and a genuine rush on to get at and use permafrost and undersea methane hydrates as a game-changing energy source, as outlined in Methane hydrates: Energy's most dangerous game. "Major government research initiatives have been launched in China, India, Germany, Norway, Russia, Taiwan and several other countries." the article says. "The Japanese government has estimated that producing gas from methane hydrates is commercially viable when oil prices rise above $54 a barrel. ..... To date, Japan has made the biggest bet on methane hydrates and appears to be the closest to commercial production."[6]

The underpinning of the political pressures to exploit methane hydrates can clearly be seen in this statement from Methane Hydrate - The Gas Resource of the Future. "According to EIA, total U.S. natural gas consumption is expected to increase from about 22 trillion cubic feet today to 26 trillion cubic feet in 2030- a projected jump of more than 18 percent [ed note: If natural gas to liquid is pursued as a serious alternative source of transportation fuel this estimate is far too low.]. ..... Production of domestic conventional and unconventional natural gas cannot keep pace with demand growth. The development of new, cost-effective resources such as methane hydrate can play a major role in moderating price increases and ensuring adequate future supplies of natural gas for American consumers."[11]

Optimistic Time Frames

That same site gives us a glimpse into the optimistic time frames being suggested and pursued. "We think that the future may be sooner than some of us are considering," Robert Hunter, president of ASRC Energy Services, which led the first major field study in Alaska's Prudhoe Bay with BP Alaska Exploration and the Department of Energy, told Petroleum News. "In parts of the world such as the North Slope, with unique motivation, hydrates may become a very stable source of natural gas within the next five to 10 years."[6] One wonders what he means with that phrase, "....with unique motivation....". Another view of the time frames is presented in Methane Hydrate Could Augment Natural Gas Supplies. "DOE's program and programs in the national and international research community provide increasing confidence from a technical standpoint that some commercial production of methane from methane hydrate could be achieved in the United States before 2025," said Charles Paull .... senior scientist, Monterey Bay Aquarium Research Institute in California."[9]

Risks and Dangers

Another view of the risks and dangers involved, with or without human involvement and exploitation, is addressed in Gas (Methane) Hydrates -- A New Frontier, "Seafloor slopes of 5 degrees and less should be stable on the Atlantic continental margin, yet many landslide scars are present. The depth of the top of these scars is near the top of the hydrate zone, and seismic profiles indicate less hydrate in the sediment beneath slide scars. Evidence available suggests a link between hydrate instability and occurrence of landslides on the continental margin."[7]

A variety of extraction techniques are being looked at to overcome the inherent difficulties in exploiting methane hydrates, as detailed in A Breakthrough in Fuel Supplying From Methane Hydrates. "Getting methane hydrate gas to flow consistently and predictably, however, has been the problem. Using heat to release the gas works, but requires too much energy to be useful. Researchers have also been trying to release the methane by reducing the pressure on it. Then last month, the Mallik team became the first to use reduced pressure to get a steady, consistent flow."[13] Both of these techniques, however, and others, run the risk that once they successfully destabilize and disassociate the methane hydrates in any part of the reserve it could lead to a catastrophic runaway destabilization of the entire reserve, a warning repeated often through the literature listed at the end of this article. In the paper, Could Methane Trigger a Climate Doomsday Within a Human Lifespan? the concern over this potential is rooted in the geological past. "The new paper suggests that exactly this type of cascading release of methane reserves rapidly warmed the Earth 635 million years ago, replacing an Ice Age with a period of tropical heat. The study’s lead author suggests it could happen again, and fast - not over thousands or millions of years, but possibly within a century. ..... "This is a major concern because it’s possible that only a little warming can unleash this trapped methane," Martin Kennedy, a professor at UC Riverside, said in a release. "Unzippering the methane reservoir could potentially warm the Earth tens of degrees, and the mechanism could be geologically very rapid."."[23] The paper goes on to state that these concerns have caused a new focus in the scientific community. "Jim Kennett, a professor of geology and paleobiology at UC Santa Barbara, said that finding climate triggers and tipping points had become the most important scientific problem of our time."[23] These views, however, are not universal in the scientific community. "David Archer, a University of Chicago geosciences professor, argued in a paper last year that methane release appears likely to be "chronic rather than catastrophic" and only on the scale of human fossil-fuel combustion."[23] The concerns, however, are reiterated in Runaway Methane Global Warming. "From these records it appears that there have been short periods of only a few hundred years in the geological past when rapid increases of the Earth's temperature have occurred superimposed on top of the rise and fall of average temperatures over the longer term. For these short periods temperature rises of up to 8 degrees centigrade appear to have occurred on top of existing long term rises of 5 to 7 degrees to give temperatures up to 15 degrees centigrade warmer than today. Temperatures then fell back to the long term trend, the whole rise and fall only lasting a few hundred years. The most likely cause of this rapid global warming over such a short period is the release of methane into the atmosphere."[25]

In Methane Hydrates: A Carbon Management Challenge, the serious questions about the risks and dangers are asked but with no pretense of supplying answers or solutions. "What are the risks of recovering methane from ocean hydrates? Could the release of methane make the sediments unstable enough to cause the collapse of seafloor foundations for conventional oil and gas drilling rigs? Could the melting, or dissociation, of methane hydrate ice lead to releases of large volumes of methane to the atmosphere, raising greenhouse gas levels and exacerbating global warming?"[20] The depth and breadth of these issues are honestly explored in the U.S. Department of Energy paper, Methane Hydrates. "However, the issues surrounding methane hydrates go well beyond its energy resource potential. As field and laboratory studies supported by the Methane Hydrates Program continue to document hydrate’s integral and active role in the global environment, important new questions are raised about the influence of hydrates on the global carbon cycle, deep sea life, sea-floor stability, and other phenomena."[21] That verbiage, however, may just serve as a preamble to this, "Therefore, the National Methane Hydrate R&D Program is driven by the need to better understand the nature of hydrates, hydrate-bearing sediments, and the interaction between the global methane hydrate reservoir and the world’s oceans and atmosphere as a compliment to the ultimate realization of hydrate’s energy potential."[21]

If our global industrial society is to be kept rolling along at anything near its current vigorous pace, there is no question that global peaks in oil, natural gas and/or coal are going to require the exploitation of new energy sources such as methane hydrates, coal-bed methane, shale gas, shale oil, and the re-embracing of nuclear energy as a primary source of electrical energy. Plans for the exploitation of methane hydrates, however, in the name of energy security and in pursuit of the dream of national energy independence are not likely to materialize as governments and politicians hope and intend, It is very likely that methane will be drawn under the umbrella of natural gas and subject to global market trading and pricing. It is even more likely that the reserves of methane hydrates will end up in the hands of energy companies who are already lining up to buy leases in areas where significant methane hydrate reserves are suspected. Additionally the research and development on technologies for the extraction of methane hydrates is being driven and financed by these same energy companies. The likelihood of them willingly giving over control of those leases and that extraction to government energy departments is very slim. They will, after all, be moving heavily into these alternatives because their current cash cows are drying up. They need them for their future financial stability and continued growth.

I am quite sure that nothing bloggers such as myself or scientists have to say will ultimately have any bearing on what governments and the energy industry will do with methane hydrates. The best we can hope is to keep them honest.


Reference material

The following links were important sources of material for this article and are here for your reference.

1) Arctic Methane on the Move?
2) Methane Hydrate: A surprising compound
3) Methane hydrates
4) Gas Hydrates: Natural gas hydrate studies in Canada
5) Methane hydrates and global warming
6) Methane hydrates: Energy's most dangerous game
7) Gas (Methane) Hydrates -- A New Frontier
8) Japan eyes methane hydrate as energy savior
9) Methane Hydrate Could Augment Natural Gas Supplies
10) Japan Mines `Flammable Ice,' Flirts With Environmental Disaster
11) Methane Hydrate - The Gas Resource of the Future
12) Realizing the Energy Potential of Methane Hydrate for the United States
13) A Breakthrough in Fuel Supplying From Methane Hydrates
14) Permafrost Melting and Stability of Offshore Methane Hydrates Subject to Global Warming
15) METHANE AND METHANE HYDRATES, SECTION 2
16) Methane Hydrate Extraction To Become Viable?
17) Gas Hydrates: Entrance to a Methane Age or Climate Threat?
18) Ocean methane hydrates as a slow tipping point in the global carbon cycle
19) More evidence of climate change: Arctic methane hydrates evaporating
20) Methane Hydrates: A Carbon Management Challenge
21) METHANE HYDRATES
22) Methane Hydrates: An Abundance of Clean Energy?
23) Could Methane Trigger a Climate Doomsday Within a Human Lifespan?
24) Methane Hydrates: What are they thinking?
25) Runaway Methane Global Warming
26) Melting of permafrost could trigger rapid global warming warns UN
27) METHANE HYDRATE ICE: A Possible Mechanism For Ice Age And Global Warming Cycles
28) Ice Sculptures for Science: Chain Saws, Pickaxes, Methane Hydrates and Climate Change
29) Global Warming: Methane Could Be Far Worse Than Carbon Dioxide